Microorganisms

641: DESULFOVIBRIO (MV) MEDIUM

This recipe contains strain-specific modifications for Hydrogenispora ethanolica DSM 25471 *

Final pH: 7.0 - 7.2 Final volume: 1003 ml

1.00 2.00 1.00	g g	
	_	
1.00	a	
	9	
1.00	g	
0.10	g	
0.50	g	
1.00	ml	
1.00	ml	
1.00	g	
0.50	ml	
1.00	g	
2.50		
1.00	ml	
0.10	g	
2.00	g	
00.00	ml	
	1.00 0.10 0.50 1.00 1.00 1.00 0.50 1.00 2.50 0.10 2.00	1.00 g 0.10 g 0.50 g 1.00 ml 1.00 g 0.50 ml 1.00 g 0.50 ml 1.00 g 0.50 ml 1.00 g 2.50 g 1.00 ml 0.10 g 2.00 g

- 1. Dissolve ingredients (except carbonate, vitamins, lactate and sulfide), sparge medium with $100\%~N_2$ gas for 30 45 min to make it anoxic, then dispense under same gas atmosphere into anoxic Hungate-type tubes or serum vials and autoclave. After autoclaving complete the medium by adding vitamins (sterilized by filtration), lactate and sulfide from sterile anoxic stock solutions prepared under $100\%~N_2$ gas and carbonate from a sterile anoxic stock solution prepared under $80\%~N_2$ and $20\%~CO_2$ gas atmosphere. Adjust pH of the complete medium to 7.0 7.2, if necessary.
- 2. Note: Prior to inoculation 10-20 mg/l sodium dithionite (added from a 5% w/v solution freshly prepared under N_2 and filter-sterilized) can be added to the medium to stimulate growth at the beginning.
- * Replace lactate with 2.0 g/l D-glucose added to the autoclaved medium from a sterile anoxic stock solution.

Trace element solution SL-10 (from medium 320)

FeCl ₂ x 4 H ₂ O 1.50 ZnCl ₂ 70.00 m MnCl ₂ x 4 H ₂ O 100.00 m			
ZnCl ₂ 70.00 m MnCl ₂ x 4 H ₂ O 100.00 m	HCI (25%)	10.00	ml
$MnCl_2 \times 4 H_2O$ 100.00 m	FeCl ₂ x 4 H ₂ O	1.50	g
2 2	ZnCl ₂	70.00	mg
H_3BO_3 6.00 m	$MnCl_2 \times 4 H_2O$	100.00	mg
	H_3BO_3	6.00	mg

Microorganisms

641: DESULFOVIBRIO (MV) MEDIUM

CoCl ₂ x 6 H ₂ O	190.00	mg
CuCl ₂ x 2 H ₂ O	2.00	mg
NiCl ₂ x 6 H ₂ O	24.00	mg
$Na_2MoO_4 \times 2 H_2O$	36.00	mg
Distilled water	990.00	ml

First dissolve FeCl_2 in the HCl, then dilute in water, add and dissolve the other salts. Finally make up to 1000.00 ml.

Selenite-tungstate solution (from medium 385)

NaOH	0.50	g
$Na_2SeO_3 \times 5 H_2O$	3.00	mg
$Na_2WO_4 \times 2 H_2O$	4.00	mg
Distilled water	1000.00	ml

Wolin's vitamin solution (10x) (from medium 120)

Biotin	20.00	mg
Folic acid	20.00	mg
Pyridoxine hydrochloride	100.00	mg
Thiamine HCI	50.00	mg
Riboflavin	50.00	mg
Nicotinic acid	50.00	mg
Calcium D-(+)-pantothenate	50.00	mg
Vitamin B ₁₂	1.00	mg
p-Aminobenzoic acid	50.00	mg
(DL)-alpha-Lipoic acid	50.00	mg
Distilled water	1000.00	ml